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Abstract— Information about drivers’ mental states can be
vital to the design of interfaces for highly automated ve-
hicles. Functional near infrared spectroscopy (fNIRS) is a
neuroimaging tool that is fast becoming popular to study the
cortical activity of participants in HCI experiments and driving
simulator studies in particular. The analysis methods of the
fNIRS data create requirements in the experimental design
such as repeated measures. In this paper, we present a study
of the event related cortical activity of the drivers of manual,
partially autonomous, and fully autonomous cars when perform-
ing lane changes using functional near infrared spectroscopic
measures. We also present the experimental methodology that
was adopted to meet the needs of the fNIRS measurement and
the subsequent analysis. The study (N=28) was conducted in
a driving simulator. Participants drove for approximately 7
minutes and performed 8 lane change maneuvers in each mode
of automation. Multiple streams of data including 4 time-synced
video recordings, NASA TLX questionnaires and fNIRS data
were recorded and analyzed. It was found that the dorsolateral
prefrontal cortex activation during lane changes performed in
a partially autonomous mode of operation was just as high
as that during a manual lane change, showing that drivers
of partially automated systems are as cognitively engaged as
drivers of manually operated vehicles.

I. INTRODUCTION

Designers of automotive interfaces have a balancing act to
play. They need to provide drivers with enough information
to enable trust or skilled performance. At the same time, they
must refrain from overloading the driver and causing stress or
distraction. Because of this, cognitive activity measures can
be important in assessing the suitability of new automotive
interaction designs. Cognitive over-loading of drivers leads
to an increase in lane keeping variation, reduced longitudinal
speed [1] and decreased response time to reduction of
longitudinal speed of vehicles ahead [2]. On the other hand,
cognitive under-loading during the operation of automated
systems could be just as dangerous as cognitive overloading
is during the operation of manually operated systems [3].
Drivers in automated vehicles show an increased tendency
for drowsy or sleepy behavior when they are cognitively
under-stimulated [4][5], which can render drivers unavailable
or impaired in emergency situations. Hence, when designing
automotive interfaces, it is vital to assess the cognitive activity
of drivers in partially and fully autonomous systems. This is
done so that the computer can be aware of the availability
of the operator, and adjust its behavior accordingly–either
working to arouse and focus the driver, or to take more agency
over the driving task.
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Fig. 1. Study participant wearing the fNIRS cap in the simulator

Recent research suggests that an increase in cognitive load
can be linked to a corresponding increase in the frontal cortex
activation. An increase in the load placed on the working
memory of a user results in an increase in the activation of
the frontal cortex of the user. This activation in turn causes
an increase in blood flow in the frontal cortex which can be
observed using NIRS [6][7].

In this study, fNIRS is used to analyze activation of
the frontal cortex which is theorized to be responsible for
working memory and attention [8], [9]. Like other physi-
ological measures, fNIRS can be deployed for monitoring
continuous, uninterrupted and long-term cortical activity and
the corresponding cognitive load [10] [11]. In comparison
to self-reporting schemes, such as the NASA TLX [12],
fNIRS provides therewith the advantage of non-intrusiveness
regarding the experimental task, of not depending on the
participants’ recollection of the study, and the exclusion of
subjectivity in particular. In benchmark with EEG, fNIRS
offers less temporal resolution yet higher spatial accuracy
within collected data. Moreover, fNIRS measurement devices
are characterized by lower presence during the experiment as
well as easier removal of motion artifacts [13] compared to
EEG. fNIRS technology has been used reliably in the study of
cognitive activity in a wide variety of experimental scenarios
[14] [15] [13]. fNIRS devices are becoming increasingly
portable and can be integrated in a number of scenarios
[16] and provides for unique advantages to the evaluation
of cognitive activity for in situ simulator and on-the road
driving experiments [17].
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II. PRIOR WORK

A. Cognitive Load in Driving

In the past, cognitive load has been often studied in the
context of manual driving. Numerous studies have recorded
reduced driving performance and attention to the road. Jamson
et al. [18] studied the effect of cognitive load imposed by a
secondary task on driving. They used a secondary visual task
and audio task on a surrogate in-vehicle information system
to increase the load on the driver. It was found that with
increased load, drivers showed reduced anticipation of braking
and reduced time to collision. Studies by Blanco et al.[19],
Nunes et al.[20], Haigney et al.[21] present similar findings.
In another study by Lee et al.[22], increased cognitive load
due to a secondary task diminished drivers’ confidence in
their ability to detect changes in the environment.

While studies indicate a decline in performance due to the
increase in the cognitive load of a driver following the addition
of a secondary task, the inverse may be true for operation of
cars with automated driving systems. The Yerkes-Dodson law
states that both significantly low arousal and significantly high
arousal can lead to a decrease in performance. In Verplank’s
thesis [3], it was hypothesized that cognitive under-loading
for operators of automated systems could be just as dangerous
as overloading in manually operated systems. Miller et al. [4]
also showed that drivers often fell asleep while supervising
a simulated automated vehicle due to lack of stimulation.
Such behavior could prove to be dangerous especially in
critical scenarios where the automated systems driving the
car fail and the driver needs to take charge. Catastrophes
resulting from operator sleepiness or drowsy behavior when
using automated flight control systems have been recorded
in the aviation industry [23].

B. fNIRS and Cognitive Load

In a study by Sibi et al. [24], fNIRS was used to calculate
the mean block oxygenation in the pre-frontal cortex of drivers
of partially automated vehicles, during automated driving.
They confirmed the finding from Miller et al. [4] and showed
that the cognitive load of drivers who were supervising
automated driving was significantly lower than while driving
the vehicle themselves. The mean block oxygenation levels
and the derived cognitive load of drivers engaged in secondary
activities such as reading or watching a movie was higher
than that during the monitoring of the vehicle. This highlights
the necessity of cognitively stimulating drivers in automated
vehicles. Sibi et al. proposed that the lack of cognitive
stimulation during the monitoring could place the drivers
of autonomous vehicles in the lower arousal regions of the
Yerkes-Dodson curve.

fNIRS has also been used in other recent studies to
study the cognitive activity of drivers of manual operated
vehicles. Yoshino et al. found significant hemodynamic
changes in the pre-frontal cortex while drivers accelerated and
decelerated in a manually operated vehicle on an expressway
[25]. Tsunashima et al. recorded significant hemodynamic
differences in the frontal lobe using fNIRS when the subjects

drove using adaptive cruise control (ACC) and manually [26].
In another experiment, Shimizu et al. recorded hemodynamic
responses in the frontal cortex under different driving con-
ditions in a driving simulator [27]. They found increased
activity in the frontal lobe when the driver was presented
a difficult driving task or an attention demanding scenario,
thereby demonstrating the usefulness of fNIRS in measuring
cognitive load. Due to these results and the success of prior
research using fNIRS in driving scenarios, we chose fNIRS
to analyze the cognitive activity in our experiment.

Past studies have shown the difference between operators
of fully autonomous vehicles and active drivers using mean
block oxygenation. However, to the best of our knowledge
there have been no efforts to understand the differences
between the cortical activity of operators of autonomous
vehicles across various levels of autonomy. The use of GLM
analysis (see section on fNIRS Data Analysis), an established
methodology in neuroscience, required repeated measures of
cortical activity during the same stimuli. Lane changes are
ecologically valid and can be used repeatedly to understand
the cortical activity using GLM based fNIRS analysis.

III. EXPERIMENT GOALS

The goals of this experiment were to:

1. Design an experimental study design for the measurement
of cortical activity using fNIRS in a driving simulator.

2. Study the effects of different levels of automation
[manual, partially autonomous and fully autonomous modes
of operation] on the cortical activity of the participant.

IV. EXPERIMENTAL SETUP

A. Experiment Settings

The study was conducted in a fixed-base driving simulator
with 270 ◦ seamless projection and individual channels for the
side view mirrors and the rear view (Figure 2). The driving
simulator had an in-vehicle interface and instrument cluster
which could be used by the participant to monitor and control
the vehicle during the experiment. The driving scenarios
and the world in the simulation were entirely designed and
programmed by the authors.

The simulator had three modes of control: manual, partially
autonomous and fully autonomous. In the manual mode of
operation, the driver was in control of all aspects of driving
such as longitudinal speed, lane keeping and direction. In
partially autonomous mode of control, the vehicle was in
charge of longitudinal speed and lane keeping. However, the
vehicle needed directional input from the driver whenever a
lane change was required. The directional input was provided
through the use of the turn indicator lever. Hence, in order
to shift to the left on a two lane road, the participant turned
on the left indicator and in order to shift to the right lane,
the participant turned on the right indicator. This follows
the model of automation input used in the Tesla Model S

1510



Fig. 2. Driving Simulator showing the 270 ◦ projection with side mirrors
and in-simulator vehicle

autopilot 1. In fully autonomous mode, the vehicle was in
control of all aspects of driving and could determine the need
for a lane change maneuver and execute the lane change
when needed without any input from the driver. The driver
was asked to monitor the car during the period the fully
autonomous mode drove the vehicle.

Both partial autonomy and full autonomy modes were
engaged by pressing two different buttons on the steering
wheel. The partially autonomous and fully autonomous modes
of control were programmed to obey all the rules of the road.
Partial autonomy and full autonomy, when engaged, were
distinguished from each other through a display icon on the
instrument cluster. A series of icons were displayed over 5
seconds to indicate the transfer of the mode of operation from
manual to either mode of operation. The icons to indicate the
transfer of control are shown in sequence in Figure 3. Once
the transfer was complete, the last icon stayed on the screen
to indicate the mode that was currently engaged. A similar
process was used to indicate the transfer of control back to
the manual mode of operation.

It must be noted here that any impact on the response
function shape was removed by ensuring an almost constant
vehicle speed throughout the segments of interest. Speed signs
were placed along the side of the road and the participants
were instructed to obey the speed limit at the start of drive.

During the study, the hemodynamic activity in the pre-
frontal cortex was recorded with a NIRSport fNIRS system
(made by NIRx Medical Technologies LLC). The NIRSport
device has 8 emitters and 8 detectors and allowed a total 20
channels of measurement. The configuration of the emitter
and detectors are shown in Figure 5 and the projection of the
channel positions onto the surface of the brain are shown in
Figure 6. The emitters use optical signals of two wavelengths,
760nm and 850nm, emitted simultaneously by each source.
The data were calibrated at the start of the experiment and
recorded using the NIRStar acquisition software.

1Tesla Autopilot, 2016. Available online at
https://www.teslamotors.com/presskit/autopilot

Fig. 3. Series of icons displayed on instrument cluster showing the transfer
of control from manual to fully autonomous (top) and manual to partially
autonomous (Bottom)

B. Participants

A total of 28 participants (18 male and 10 female) between
the ages of 17 to 71 (Mean = 31.11 and SD = 12.76)
participated in the study. Each participant drove in all three
modes of operation and the order of occurrence of the
modes was counterbalanced in order to avoid ordering effects.
Participants were recruited through online postings on public
forums.

C. Procedure

The study lasted for 35 - 40 minutes depending on the
speed of the driver during the segments of manual driving.
The structure of the study is shown in Figure 5. The study
contained 4 segments: one practice segment and three main
segments, during which the participants drove using manual,
partially autonomous or fully autonomous mode of control.
The participants were told that during the study, they would
encounter vehicles that obstruct their path, creating a need
for a lane change maneuver. During the practice section, the
participant drove the vehicle in all three modes of control so
that they could get acclimated to the transfer of control and
modes of lane change. Also during the practice segment, the
participant performed 2 lane changes in manual mode and 1
lane change each in the partial and fully autonomous modes.

In each of the main study segments, participants performed
a total of 8 single lane changes, where each lane change was
required due to a car moving at a much slower speed than the
speed limit in the same lane as the participant. Participants
were instructed to only perform single lane changes and were
asked to obey all rules of the road. At the end of each segment
(practice and 3 main segments), participants were asked to
pull over to the side of the road and fill out a questionnaire
comprising of the NASA TLX questionnaire [12]. At the end
of the study, participants were asked to fill a questionnaire
comprising of questions that qualified the operation of the
vehicle on a Likert scale.

Markers were placed in the fNIRS data in order to
synchronize the fNIRS data and the simulator events. Virtual
sensors placed in the simulated environment, in conjunction
with the trigger module of the NIRSport package, allowed
for placing markers in the fNIRS data. The start and end of
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Fig. 4. Time Line of the study showing the single lane changes in each segment.(MLC - Manual Lane Change, PLC - Partially autonomous lane change,
ALC - Fully Autonomous Lane Change) (Diagram not to scale)

Fig. 5. Source Detector Configuration of the optical probes placed on the
frontal cortex region of the participant. The map of the optode on the right
shows a total of 20 channels.(Si: Source, Di: Detector), Chi: Channel. The
Regions of Interest (ROI) have been shown as in red (region 3: Ventral),
green (regions 1 and 4: Lateral) and blue (region 2: Dorsal) and the channels
included in the estimation of activation for the ROIs are included in the
region

each driving segment and the occurrence of the lane change
tasks were marked using 4 different markers. The start of the
lane change event is marked by the appearance of a car in
the same lane as the driver. This moment is registered in the
fNIRS data stream using markers specific to each mode of
automation. In this way, the driving data from the simulation
is synchronized with the fNIRS data. Additionally the screen
recording of the fNIRS recording computer was synchronized
using a quad multi-viewer with the simulation video output
in order to contextualize the observed frontal cortex activity
with the events and participant behavior. The time-line of all
the markers placed is shown in Figure 4.

In order to avoid any frontal cortex activity that does not

Fig. 6. Projection of the fNIRS device channel positions on the surface of
the brain in the Montreal Neurological Institute(MNI) Coordinate Space

correspond to the operation of the vehicle, the experimenters
designed the system to be as minimally stimulating as possible.
The simulation did not have any ambient traffic. Only signs
to indicate the speed limit were placed on the side of the
road. In each main study segment, the 8 single lane changes
were divided into 4 right lane changes and 4 left lane changes
to balance any lateralization effects arising due to the right
or left handedness of the activity in the fNIRS data.

V. RESULTS

The fNIRS data were analyzed using the open source
HOMER2 scripts implemented in MATLAB [28] and the SPM
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MATLAB package (open source neuro-imaging data analysis
tools made available at http://www.fil.ion.ucl.ac.uk/spm/).
The time-synced video streams were analyzed to identify
anomalous participant behavior. Based on the video analysis,
two participants’ data were excluded from analysis due to
incorrect task performance, participant adjusting the NIRS cap
due to discomfort and excess unwarranted movements by the
participant. One other participants data were excluded due to
failures of the NIRS recording device during the experiment.
fNIRS data from a total of 25 participants and questionnaire
data from 28 participants were analyzed.

A. fNIRS Data Analysis

The fNIRS data were analyzed using the HOMER2
MATLAB scripts. To begin, the raw data were converted
into the change in optical density using the hmrIntensity2OD
function. Said function uses the normalized changes of light
incident on a detector from a source. The function employs
a logarithmic relation described in [28]. Once, the change in
optical density was estimated, the channels of data that had a
signal to noise ratio less than 2 or had values that were higher
107 or lower than 0 were removed using the enPruneChannels
function. A band-pass filter, hmrBandPassFilt, was used with
cut off frequencies of 0.01 Hz and 0.5 Hz to eliminate
background physiological signals (such as blood pressure
variations and cardiac pulsations) and machine noise. The
data were then passed through the homer function motion
artifact correction algorithm hmrMotionCorrectWavelet using
a inter-quartile range of 1.5. Prior works [29] have shown
that the performance of the wavelet correction is the most
effective among contemporary motion correction algorithms.
Motion artifacts were then identified by any sudden increases
in the optical density greater than 20 times the standard
deviation and an amplitude increase greater than 0.3 using
the hmrMotionArtifact function and eliminated using the
enStimRejection function. The corrected optical density data
were then converted to HbO, HbR and HbT concentrations
using the hmrOD2conc function using partial pathlength
factors of 6 for both wavelengths (760nm and 850nm). The
markers placed during the study were then used to calculate
the onset times of the events and the rest periods. The duration
of the lane change events (from the appearance of a vehicle in
the subject’s lane to overtaking the vehicle) was 18 seconds
and the rest periods (duration of vehicle operation with
no incidents in the simulation) were 10 seconds. For the
purpose of the GLM analysis, only Oxygenated Hemoglobin
(HbO) data were chosen. The GLM analysis was performed
to calculate the response signal strength of the HbO data
(designated as β henceforth).

The statistical analysis was performed with IBM SPSS
Statistics 23 software. All β values had to be multiplied
by factor 106 to overcome the software’s limitations on
analyzing numeric values as low as micro to picco range.
Following the methodological approach from prior works
[10], [30], 4 regions of interest (ROI) were defined, left
and right lateral, ventral and dorsal regions of the prefrontal
cortex (Figure 5) [31]. Paired-samples t-test were performed

in order to investigate whether there was a statistically
significant difference between β values of lane change
maneuvers (designated as LCP, LCM LCA for lane changes
in partially autonomous, manual and fully autonomous modes
of operation) and rest driving (Partial (P) vs Manual (M) vs
Autonomous(A)) for each condition and region (Figure 7, top).
Further, one-way repeated measures ANOVAs were used to
test whether there was a difference in basal driving between
conditions and whether there were differences between the
contrasts (differences in β values between lane change
tasks and corresponding rest condition, ∆LCPP, ∆LCMM,
∆LCAA) between modes of automation. Data are mean ±
standard deviation, unless otherwise stated, and the two-
tailed significance level (p ≤ .05) is used (Figure 7, bottom).
Outliers were detected with 1.5 box-lengths from edge of
the box in a boxplot and the assumption of normality was
assessed by Shapiro-Wilk’s test (p ≥ .05). In case ANOVA
tests of within-subject effects revealed statistically significant
differences, the post hoc analysis with Bonferroni adjustment
for multi comparison was applied to test all possible pairwise
combinations of mean values of measures within a region.
Further Mauchly’s test of sphericity was used to test whether
the assumption of sphericity had been violated. All regions
and conditions that indicate any significant differences in the
β values have been highlighted in Figure 7.

The most interesting result observed in the results is that
increase in activation in the lateral prefrontal cortex (shown
by the response signal strength β) across all the modes of
operation. It is also observed that highest increase in activation
is in the partial automation lane change.

Statistically significant increase in frontal cortex activations
were also observed across the dorsolateral regions (regions
1, 3 and 4) when the participant executed autonomous lane
change tasks. A comparison of the contrasts observed during
the lane changes across conditions in regions 2 and 3(shown in
lower half of Figure 7) showed the contrasts for autonomous
lane changes were highest, followed by partial and manual
modes of operation. No significant differences were observed
between the activations of the rest conditions between the
three mode of automation in any region.

B. Questionnaire Data Analysis

The data from the three in-experiment and one post-
experiment questionnaire were analyzed. To determine if
there were any differences between the three driving systems
in terms of the participants’ post drive questionnaire response,
we performed a one-way ANOVA on the levels of automation.
For this test, we removed outlier responses that were two
standard deviations from the mean. We saw a significant
difference between the groups on measures of whether the
system of the car was Easy to Drive (F(2,76)=4.94, p=0.01),
Fun to Drive (F(2,78)=4.19, p=0.019), and Safe (F(2,78)=5.22.
p=0.007).

We also see a moderately significant difference for whether
the system of the car was Trustworthy (F(2,77)=3.09, p=0.05).
A Tukey post-hoc analysis revealed that there was a significant
difference between the Manual Mode and Full Autonomous

1513



Fig. 7. Results from paired-samples t-test and one-way repeated measures
ANOVAs. Results were significant at the 0.05 level (2-tailed) with p < .001
(***), p < .01 (**), and p < 0.5 (*). Data are mean ± standard deviation.
Region 1 = [Channel 1, Channel 3, Channel 4]; Region 2 = [Channel 2,
Channel 5, Channel 8, Channel 9, Channel 10, Channel 15, Channel 17],
Region 3 = [Channel 6, Channel 7, Channel 11, Channel 12, Channel 13,
Channel 14, Channel 16], Region 4 = [Channel 18, Channel 19, Channel
20]. All beta values were multiplied by fraction 106.

Fig. 8. ANOVA results of questionnaire data. ( * p < 0.05 for the measures
that had significant differences, M1 - moderately significant difference p =
0.0526. Questions were presented on a 7 point Likert scale. )

Mode for the questions of Easy to Drive (p=0.007) Fun
to Drive (p=0.016) and Safe (p=0.005). There were no
statistically significant differences between the Partially
Autonomous Mode and the other modes. Based on the
questionnaire results (see figure 8), participants found that
Fully Autonomous Mode to be easier and safer to use, but
not as fun to drive compared to the Manual Mode. The
questionnaire presented to the participants to understand the
driver perception that yielded the above results were presented
on a 7 point Likert scale that ranged from Strongly agree to
Strongly Disagree.

VI. DISCUSSION

A. Cognitive Activity as a function of Vehicle Automation

The role of the dorsolateral prefrontal cortex in working
memory and attention is well established [8], [32] and an
increase in the demand for working memory is expected
to cause an increase in the activation in this region. An
increase in the dorsolateral frontal cortex activity (measured
by the response signal strength values) during the partial
lane changes shows that participants dedicate as much, if not
more cognitive resources to the operation of the vehicle than
they do during the manual mode of operation. The increased
frontal cortex activity observed in the partial automation
mode could be explained by the need for the driver to remain
in the loop. Though the car’s driving systems reduce the
driver’s involvement in driving, the driver needs to maintain
engagement to give input to the automated system at the
appropriate moments. Changes in dorsolateral prefrontal
cortex activity in manual driving was lower than that in
partial automation though the driver is responsible for all
aspects of driving control. This is because the manual mode
of operation is commonplace and familiar.

In the fully autonomous mode of operation, it was found
that the increase in the cortical activity after the onset of
the stimulus was significant in variance to the hypothesis
in [24], [4]. This variance could be due to several of the
participants experiencing the autonomous feature of the car
for the first time. The increase in the activation could be
explained by the experience and use of a novel feature in
driving. This result could also be due to a learning effect
that occurs over the duration of operation of the vehicle in
the autonomous mode. The questionnaire data shows that the
participants trust the vehicle and feel that it is safe to drive.
However, it is important to note that participants develop
trust in the system over the duration of the test segment. This
longitudinal impact on the cortical activity of the participant
was not studied in the work presented here. Participants were
also asked at the start of the experiment to monitor the driving
of the vehicle at all times and to not pursue other activities.
In a fully autonomous vehicle, this might not be the case and
drivers would almost certainly pursue other activities.

In lower levels of automation (NHTSA levels 1 and 2),
the driver is constantly engaged in the supervision of the
automated system and is in the control of the vehicle through
inputs. Since the mental load during partial automation
operation is shown to be the same during manual driving, it
is possible that the addition of secondary tasks to operation
of vehicles with partial automation could be damaging to
driver performance. Past studies [19], [1] have demonstrated
the decrease in driver performance with added operator load
which correlates with our finding as well. On the other hand,
the increased cognitive load is preferable to the potentially
cognitively under-loading conditions associated with higher
level partial automation (NHTSA Level 3) as stated in prior
works [4], [24]. The fact that the Fully Autonomous mode
was not rated as very fun to drive is an indication that people
prefer more cognitive engagement than what is offered by
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full automation.

B. Limitations and Future Work

In order to apply GLM analysis, repeated measures for
each driving mode were required. The repeated exposure to
the same stimulus might lead to order effects and related
decrease of mental efforts over time. Repeated trials often
result in a learning effect and the mental effort needed for
task execution would be lowered. This study does not account
for these effects in the design of the order of activities but
provides a firm base upon which future studies may be built.
Further studies could implement a randomized design in the
order of the driving tasks to eliminate driver learning and
adaptation. Specifically, an investigation into the variation
of the trust and the frontal cortex activity over a prolonged
period of usage might provide vital information in the design
and engineering of an automated driving feature.

While fNIRS gives an accurate measure of cortical activity,
the use of fNIRS in everyday driving is not possible for
ergonomic reasons. Past studies [33] have shown the effect of
varying cognitive load on the operator’s behavioral outcome.
Physiological measures such as heart rate, respiration, blink
rate, etc. can be used employed in future studies alongside
fNIRS so that they might be used as indirect measures in
day-to-day driving or cognitive activity. These measures are
becoming increasingly commonplace in the automotive cabin
space2.

VII. CONCLUSION

This study analyzes the cortical activity of drivers in
manual, partially autonomous and fully autonomous vehicles
and addresses the technical difficulties in the building of
an experiment with fNIRS as an neurological measure in
driving studies. It was found that the dorsolateral prefrontal
cortex activation during lane changes performed in a partially
autonomous mode of operation was just as high as that
during a manual lane change, showing that drivers of partially
automated systems are as cognitively engaged as drivers of
manually operated vehicles.fNIRS is useful in automation
studies because it is a measure that does not rely on self-
report that can be used across levels of automation. This
means that, unlike most behavioral or performance measures,
we can use fNIRS to stage comparisons between different
automation contexts. One of the challenges of using fNIRS
as a measure is that the hemodynamic signals measured can
be obscured by motion artifact noise, so repeated measures
study designs, like the lane change tasks used in this study,
are required.

The need for these slightly contrived circumstances and
relative bare simulation landscapes means that a fNIRS
study has limited ecological validity; to design studies that
are both ecologically valid and have repeated measures is,
thus, cumbersome. These limitations can be overcome by
profiling fNIRS measurements against measures of driver
load, performance or stress which are less direct but possibly

2http://www.techinsider.io/faurecia-creates-first-passenger-seat-for-
driverless-cars-2015-11

more contextually robust. In any case, this type of study
provides vital insight into the cognitive activity of a mode of
automation that is expected to become popular in the near
future.
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